
Proceedings of the 28th IEEE International Conference on

Software Maintenance

Riva Del Garda
Trento, Italy

September, 2012

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy
beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom
of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE
Operations Center, 445 Hoes Lane, Piscataway, NJ 08854.

All rights reserved. Copyright c©2012 by IEEE.

IEEE Catalog Number: CFP12079-ART
ISBN: 978-1-4673-2312-3

Editors
Paolo Tonella, FBK, Trento, Italy

Massimiliano Di Penta, University of Sannio, Italy
Jonathan I. Maletic, Kent State University, USA

Sponsors
IEEE Computer Society

Technical Council on Software Engineering

Supporting Organizations
Fondazione Bruno Kessler (FBK)

SAP
GrammaTech

2012 28th IEEE International Conference on Software Maintenance (ICSM)

Foreword

Welcome to the 28th IEEE International Conference on Software Maintenance in Riva del Garda,
Trento, Italy. Riva del Garda (or simply Riva) is a small city located at the north-western corner
of Lake Garda, in the middle of the Alps. Thanks to the presence of the lake, the weather in Riva
favors the Mediterranean vegetation: lemon trees, olive trees, laurel and palm trees. Riva is actually
an oasis of Mediterranean at the foot of the Dolomites. We hope you will enjoy the location as much
as the conference.
ICSM 2012 is the result of a huge effort undertaken by 21 people who served in the Organizing
Committee. The Program Committee for the Technical Papers consists of 67 people. The total
number of Program Committee members for all tracks is 129 people. Moreover, several additional
reviewers contributed to the review process. The names of these reviewers are listed in the following
pages and we want to thank all of them for their great work and contributions. The high quality of
the program descends from the quality of the submissions and of the reviewers.
We also want to thank the technical sponsors of the conference, the IEEE Computer Society and
the IEEE Technical Council on Software Engineering, for their help and support. We extend our
gratitude to our supporters for their generous contributions: FBK, SAP and GrammaTech.
Four additional events are co-located with ICSM this year: the 4th International Symposium on

Search Based Software Engineering (SSBSE), for the first time in co-location with ICSM, the
12th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM),
the 14th IEEE International Symposium on Web Systems Evolution (WSE), and the 6th Interna-

tional Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Sys-

tems (MESOCA). In addition to the main Research track, ICSM 2012 features the Early Research

Achievements (ERA) track, the Industry track, the Tool Demonstrations track, the PhD session, and
two exciting Keynotes, given by Prof. Mauro Pezzè and by Prof. Lori Pollock. For the second time
in its history, ICSM 2012 will award the Most Influential Paper, selected among those presented at
ICSM 2002.
The Research track received 181 submissions. Out of them, the program committee accepted 46
papers (25%) by 126 authors from 19 countries. Each paper was reviewed by at least three members
of the Program Committee. Each paper received at least three reviews and, after the authors had
the possibility to submit a rebuttal, the reviews have been extensively discussed online during two
weeks, and final decisions were made based on the reviews and the discussions.
The ERA track features 16 papers, the Tool Demonstrations track includes 9 tool demonstrations,
the Industry track includes 8 full and 1 short paper. The ICSM program includes the 1st Workshop

on the Next Five Years of Text Analysis in Software Maintenance.
We hope you will have a great time and an unforgettable experience at ICSM 2012 in Riva.

Paolo Tonella Jonathan I. Maletic Massimiliano Di Penta
ICSM 2012 General Chair ICSM 2012 Program Co-Chair ICSM 2012 Program Co-Chair
Fondazione Bruno Kessler Kent State University University of Sannio

Trento, Italy USA Benevento, Italy

iv

2012 28th IEEE International Conference on Software Maintenance (ICSM)

663 Isela Macia, Roberta Arcoverde, Elder Cirilo, Alessandro Garcia, Arndt von Staa
Supporting the Identification of Architecturally-Relevant Code Anomalies

667 Alex Tomasi, Alessandro Marchetto, Chiara Di Francescomarino, Angelo Susi
reBPMN: Recovering and Reducing Business Processes

DOCTORAL SYMPOSIUM
672 Ricardo Perez-Castillo

MARBLE: Modernization Approach for Recovering Business Processes from Legacy Information Systems
678 Balthasar Weitzel

Understanding Deployment Costs of Enterprise Systems

683 List of Authors

xviii

MARBLE: Modernization Approach for Recovering Business Processes from

Legacy Information Systems

Ricardo Pérez-Castillo

Instituto de Tecnologías y Systemas de Información (ITSI), University of Castilla-La Mancha

Paseo de la Universidad 4 13071, Ciudad Real, Spain

ricardo.pdelcastillo@uclm.es

Abstract— The volatile IT industry often tempts companies to

replace legacy information systems with new ones. However,

these systems cannot always be completely discarded because

they gradually store a significant amount of valuable business

knowledge as a result of progressive maintenance over time.

MARBLE semi-automatically rebuilds the hidden business

processes embedded in legacy information systems. MARBLE

supports a business process archeology method which allows

business experts to attain a rapid and meaningful

understanding of the organization’s business processes.

MARBLE-framed techniques are based on static and dynamic

analysis by considering different legacy software artifacts (e.g.,

source code, event logs, etc.). Through the validation of

MARBLE with several industrial systems, the proposal proved

to be less time-consuming and more exhaustive (since it

considers the embedded business knowledge) than a manual

process redesigned by experts from scratch. The main

implications are that MARBLE provides maintainers with a

mechanism with which to modernize legacy information

systems in line with the actual business processes of an

organization.

Keywords—Business Processes; Software Modernization; Static

Analisis; Dynamic Analisis; Model Transformation.

I. INTRODUCTION

In the early 1990s, Business Process Management (BPM)
arose as a mechanism with which to maintain and improve
the quality of processes and operations carried out by
enterprises and organizations. A business process depicts a
sequence of coordinated activities, together with their roles
and the data involved, that must be carried out to achieve a
business goal [10]. Business processes have become a key
asset in organizations, since they allow them to carry out
their daily operations. Business process management also
helps organizations to address technological and
organizational changes in order to consequently improve
their competitiveness [2].

Most business processes in organizations are supported
by their enterprise information systems. The optimal
business process management is therefore achieved when
organizations additionally combine the management of their
Legacy (existing) Information Systems (LIS) [10]. The
configuration management of legacy information systems is
particularly important since these systems undergo a
considerable amount of changes during their lifecycles.
Legacy information systems change as a result of

evolutionary maintenance, in which new business
requirements and functionalities are incorporated into the
system [8, 11].

As a consequence of the evolutionary maintenance over
time, new business knowledge and rules are embedded in
legacy information systems. This embedded business
knowledge may not be existent anywhere else [14]. The
evolution of information systems in isolation consequently
affects the evolution of business processes (see scenario 1 in
Figure 1). In this case, it is necessary to discover and
reconstitute the underlying business processes that are
currently supported by legacy information systems [6].

However, there are many organizations that currently
carry out a vast amount of daily transactions through their
enterprise information systems without having ever done
their own business process modeling. When these
organizations deal with business process modeling for the
first time, a recurrent method by which to attempt this
modeling is the extraction of business processes from legacy
information systems [22] (see scenario 2 in Figure 1). This is
owing to the fact that legacy information systems are one of
the few knowledge assets in organizations that can be used to
attain an accurate understanding of the actual business
process.

Figure 1. Scenarios to discover embedded business processes.

In both scenarios (see Figure 1), retrieving an up-to-date
version of business processes from legacy information
systems allows organizations to take advantage of at least
two main benefits:

 Benefits for business process modeling. Business
processes can always be up-to-date. Organizations
may therefore conduct business process management
by following the continuous improvement process.
This kind of business process management facilitates

Organizations

BP0

IS

BPT

LIS

model

automated by

evolve

execute

?

Organizations

IS BP0

have/use

execute

?

ti
m

e

Scenario 1 Scenario 2

* (BP – business processes, IS – information systems, LIS – legacy information systems)

978-1-4673-2312-3/12/$31.00 ©2012 IEEE

2012 28th IEEE International Conference on Software Maintenance (ICSM)

671

an agile adaptation of business processes to meet all
the changes that occur in the uncertain environment
of a company. The rapid evolution of business
processes allows organizations to maintain, or even
improve, their degree of competitiveness [10].

 Benefits for legacy information systems. Legacy
information systems may continue to be modernized
on more occasions. A recent study by the SEI
(Software Engineering Institute) states that it is first
necessary to retrieve embedded business knowledge
in order to modernize systems in line with the
organization’s business processes [12]. Organizations
can thus modernize their legacy information systems
whilst they align the new systems with their actual
business processes. Legacy information systems are
therefore evolved rather than being immediately
retired and the ROI (return of investment) on such
systems is improved. This is because the lifecycles of
these systems are extended, which saves costs as
regards new developments from scratch.

II. STATE-OF-THE-ART

There are two trends or approaches in literature that can
be used to recover embedded business processes. In the first
approach, several business process mining techniques and
algorithms have been proposed [22]. Process mining takes
event logs recorded during the execution of enterprise
information systems as input. All these approaches assume
the presence of event logs and they are not concerned with
obtaining event logs from systems. In this respect, other
works attempt to obtain event logs from different kinds of
Process-Aware Information Systems (PAIS). For example,
Günther et al. [5] provide a generic import framework with
which to obtain event logs, while Ingvaldsen et al. [7] focus
on Enterprise Resource Planning (ERP) systems to obtain
event logs from the SAP’s transaction data logs.

Unfortunately, the main problem of business process
mining is that there are no well-proven techniques with
which to obtain event logs from traditional legacy
information systems (i.e., non-process-aware information
systems) without an in-built logging mechanism. This is an
important challenge since there are a vast amount of legacy
information systems in industry that do not explicitly support
business processes (i.e., non-process-aware information
systems). The provision of techniques with which to obtain
event logs from traditional legacy information systems may
facilitate the application of all the efforts (techniques and
algorithms) made in the business process mining field.

In the second approach, several proposals consisting of
the analysis and inspection of different software artifacts
have been proposed in literature. In this Thesis, these kinds
of approaches have been termed as Business Process
Archeology [15]. While business process mining relies on
event logs produced at runtime, business process archeology
analyzes different artifacts (e.g., source code, databases, or
even event models) by means of reverse engineering in order
to obtain the underlying embedded business processes.

Some of these kinds of proposals are based on the static
analysis of source code. One of these proposals is that of Zou

et al. [24], which statically analyses the source code and
applies a set of heuristic rules to discover business processes.
Paradauskas [14] present a framework to recover business
knowledge through the static analysis of data stored in
databases. Marcus et al. [13] and Poshyvanyk et al. [19]
apply a concept location technique locating business
concepts into source code. The major disadvantage of these
proposals (which solely use static analysis as a reverse
engineering technique) is that run-time information is
ignored. Other methods using dynamic analysis are therefore
proposed. Di Francescomarino et al. [4] discover business
processes through the execution of graphical user interfaces
in Web applications. Cleve [3] combines static and dynamic
analysis of databases to obtain data-intensive business
knowledge. Van Geet et al. [23] use concept analysis to
extract business rules from COBOL mainframe systems.

The main weakness of the second approach, business
process archaeology, is that most efforts are ad hoc
proposals, which are developed for particular platforms,
technologies and specific contexts. This lack of formalization
and standardization leads to another challenge related to the
automation of such techniques, and the repeatability of
business process archaeology techniques in large-scale
projects is therefore in doubt [1]. In fact, a 2005 study [21]
states that 50% of reengineering projects (based on reverse
engineering techniques) fail owing to the lack of
standardization and automation, which often leads to
overruns in costs.

Standardization and automation challenges limit the
applicability of the aforementioned techniques to large and
complex legacy information systems. These challenges can
be addressed by Model-Driven Development (MDD)
principles, i.e., (i) considering and treating all software
artifacts as models which conform to specific metamodels,
and (ii) establishing automatic transformations between
models at different abstraction levels. The Architecture
Driven-Modernization (ADM) initiative (also known as
software modernization) launched by the OMG, particularly
advocates carrying out a reengineering process by following
model-driven development principles.

ADM solves the formalization problem since it
represents all the artifacts involved in the reengineering
process as models, which are represented in accordance with
specific metamodels. The Meta Object Facility (MOF), a
standard adopted from the OMG, is used for this purpose to
provide both a metadata management framework and a set of
metadata services to enable the development and
interoperability of model and metadata driven systems. MOF
has made a significant contribution to some of the core
principles of both the MDA and ADM.

The research hypothesis is therefore that ADM can
address the standardization challenge since it treats all the
artifacts involved in the recovery process homogeneously,
i.e., as models. The automation challenge may therefore be
addressed thanks to the automated transformations together
with the reuse of models at different abstraction levels.
Thereby, the main research goal of the thesis is: “to define an
ADM-based framework with which to discover and

2012 28th IEEE International Conference on Software Maintenance (ICSM)

672

reconstitute business processes from legacy information
systems”.

III. MARBLE

MARBLE is an ADM-based framework which uses the
KDM (Knowledge Discovery Metamodel) [9] to represent
all the knowledge involved, the cornerstone specification of
the ADM initiative (see Figure 2). The KDM specification
defines a standard metamodel that facilities an integrated
representation and management of all the knowledge
extracted by reverse engineering from all the different
software artifacts of legacy information systems. MARBLE
extracts legacy knowledge which is integrated into a
common KDM repository and it then gradually transforms
this knowledge into business process models. The
abstraction gap between software artifacts (such as source
code) and business process models must be reduced
progressively. MARBLE therefore defines four kinds of
models at four different abstraction levels. MARBLE
additionally establishes, according to the ADM initiative,
three model transformations between the four abstraction
levels.

Figure 2. An overview of the MARBLE framework

The four generic abstraction levels proposed in
MARBLE are the following:

 Level L0. This is the lowest level of abstraction. L0
represents the legacy information system in the real
world as a collection of different software artifacts
(e.g. source code, database, documentation, etc.).

 Level L1. This level consists of several specific
models, i.e., one model for each different software
artifact involved in the archeology process, such as
source code, database, user interface, and so on.
These models are considered to be PSM (Platform-
Specific Models) since they depict the software
artifacts according to their specific technology or
platforms.

 Level L2. This level consists of a common PIM
(Platform-Independent Model) which represents the
integrated view of the set of PSM models at L1. The
standard KDM metamodel is used for this purpose,

since it makes it possible to model all the artifacts of
the legacy system in an integrated and technological-
independent manner.

 Level L3. This is the highest level of abstraction
which represents a computational independent model
of the system. L3 depicts the business processes
retrieved from the knowledge concerning legacy
information systems represented in the KDM
repository at L2. Business process models at L3 are
represented according to the BPMN (Business
Process Model and Notation) metamodel proposed by
the OMG.

MARBLE additionally defines the following three model
transformations between the four abstraction levels in order
to incrementally obtain business process models:

 Transformation L0-to-L1. The first transformation
obtains PSM models from each legacy software
artifact. Traditional reverse engineering techniques
[1] such as static analysis, dynamic analysis,
subsystem decomposition, and so forth, are used to
discover and extract knowledge from a software
artifact and build the respective PSM model (see
Figure 2). Each PSM model is represented according
to a specific metamodel, e.g., a Java metamodel can
be used to model source code, or an SQL metamodel
can be used to represent the database schema of a
legacy information system.

 Transformation L1-to-L2. The second
transformation consists of a set of model
transformations with which to obtain a common PIM
model based on the KDM metamodel. This PIM
model is built from the PSM models from level L1.
The L1-to-L2 transformation can be implemented by
means of QVT (Query / Views / Transformations)
standard proposed by the OMG. The QVT scripts
translate instances of metaclasses of respective
metamodels used at L1 and metaclases of the standard
KDM metamodel. The transformation from the
legacy information system (at L0) to the KDM model
(at L2) is made through the level L1 since in many
cases, the platform-specific knowledge at the
intermediate level L1 might be used to infer more
business knowledge at L2. The semantic gap between
the legacy information system and the respective
KDM model is thus reduced incrementally.

 Transformation L2-to-L3. The last transformation is
based on a set of business patterns and a matching
technique with which to identify them. When a
particular structure (according to a pattern) is detected
in the KDM model (at L2), that pattern indicates the
respective structure of elements that must be built into
the business process model (at L3). MARBLE
framework implements this pattern matching
technique through a model transformation also
written in QVT. The L2-to-L3 transformation can
additionally be aided by business experts who know
the organization. Experts provide external
information to refine the first sketch of the business
processes obtained after pattern matching.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

673

MARBLE can be used as standard guidelines to provide
concrete techniques with which to obtain business processes
from legacy information systems. Each concrete technique is
characterized by (i) the legacy software artifacts that are
considered at L0; (ii) the reverse engineering technique used
to extract embedded business knowledge from these
artifacts; (iii) the set of business patterns employed in the last
transformation; and (iv) whether business expert post-
intervention does or does not take place.

This PhD Thesis provides two concrete techniques,
which are summarized in Figure 3. Although both techniques
consider legacy source code as the input software artifact,
these techniques address business process recovery from two
different perspectives. On the one hand, the first technique
statically analyzes the source code and represents the
embedded knowledge in a KDM repository, which is then
analyzed by applying a pattern matching technique to
discover business process models. On the other hand, the
second technique analyzes the source code at runtime to
obtain event logs that are then analyzed in order to retrieve
business processes. While the first technique follows the
business process archaeology approach, the second follows
that of business process mining.

Figure 3. Static and dynamic techniques framed in MARBLE.

A. Static Technique

The static technique framed in MARBLE considers
legacy source code as the key software artifact at L0 and
static analysis as a reverse engineering technique with which
to extract the embedded knowledge at L0 and represent it at
L1. The static analysis of source code consists of the
sequential, syntactic inspection of the all source code files.

This technique is supported by a tool that has been
especially developed for this purpose. The tool has a module
with which to analyze source code files (Java files in
particular) and builds an abstract syntax tree of the source
code, i.e. a code model at level L1 (see Figure 3). The
advantage of the static approach is that the syntactic parser
that is used to analyze the source code is easy and non-time-
consuming to build. Moreover, the tool implements a QVT
model transformation to transform the code model into a

KDM model at L2. The KDM model provides a standard
inventory of all the source code elements and their
relationships, and can therefore be used for other business
process recovery techniques framed in MARBLE or any
other software modernization activity.

The static technique (see Figure 3) provides a set of
business patterns to support the discovery of business
processes at L3 [17]. The set of patterns is divided into three
categories:

 Structural patterns, which deal with the structural
elements (e.g., business activities or tasks) and their
combinations (such as sequence flows or gateways).
There are four patterns which transform: (i) packages,
compilation units or other aggregation units (e.g. Java
classes or interfaces) into business process diagrams;
(ii) methods into tasks; (iii) calls between methods
into sequence flows between the respective tasks; and
(iv) conditional branching, e.g. if-then-else or switch
statements, into exclusive gateways that branch the
main sequence flow.

 Data patterns, which deal with data objects and how
these objects are related to other structural elements.
There are two data patterns, which transform: (i) read
program variables for a method into a data object
with an association to the respective task; and (ii)
written program variables into data objects with an
association from the task.

 Event patterns, which build all the elements
involved in the event management. There are three
patterns, which transform: (i) the start method into a
start event and sequence flow to the respective task;
(ii) end tasks into sequence flows from such tasks to
an end event; and (iii) conditional calls into sequence
flows with an intermediate conditional event.

The pattern recognition and generation of business
process models is implemented in the tool developed by
means of QVT transformations [16]. The tool can also be
used by business experts to refine the business processes
discovered, since it provides graphical model editors for both
KDM and business process models.

B. Dynamic Technique

The dynamic technique framed in MARBLE (see Figure
3) considers knowledge derived from system execution.
Hence, the reverse engineering technique considered in the
L0-to-L1 transformation combines static analysis and
dynamic analysis.

The static pre-analysis injects statements into certain
places of the source code to register execution events in a log
when these statements are executed (see Figure 3). Each
event recorded in the log specifies the execution of an
underlying business task supported by a certain piece of
source code. According to [18], the injection of these tracing
statements into the source code therefore entails five key
challenges that must be addressed: (i) process definitions are
implicitly described in legacy source code and, thus, it is not
obvious which events should be recorded in the event log;
(ii) the granularity of callable units of an information system
and activities of a business process often differs; (iii) legacy

2012 28th IEEE International Conference on Software Maintenance (ICSM)

674

code not only contains business activities, but also technical
aspects which have to be discarded from target business
processes; (iv) since traditional systems do not explicitly
define processes, it is necessary to establish when a process
starts and ends; (v) finally, owing to the missing process-
awareness, it is not obvious how the business activities and
process instances executed should be correlated.

This technique partially addresses these challenges by
considering information provided by business experts and
system analysts. This information is necessary to reduce
potential noise in the event log caused by the aforementioned
challenges. Although manual intervention by experts might
appear to be a time-consuming task, this task is less time-
consuming and even less error-prone than business process
modeling from scratch.

After static pre-analysis, the dynamic analysis records
events during system execution (see Figure 3). When the
instrumented code is executed, the injected statements
invoke a function that records the respective event in the
event log. The event log can then be used to discover the
business processes by taking the system execution
information into account. In the same manner as the static
technique, this dynamic technique transforms the event log at
L1 into a KDM model at L2, and then transforms this model
into business process models at L3. However, this technique
reuses existing process mining techniques such as those
supported by ProM tool [22] in order to discover business
process models (at L3) from event logs generated after
dynamic analysis (see Figure 3).

IV. LESSONS LEARNED

The key lessons learned from this research are mainly
two: the first one is related to the fieldwork necessary to
obtain advances in the research, and the second one is related
to the limitations of the proposal.

A. Fieldwork is necessary

During the Thesis, the office work is very comfortable
and bearable. However, research proposals on the role have
to be empirically validated through a hard fieldwork.
Particularly, in order to ensure the applicability of our
proposal, we always want to validate each tiny proposal with
industrial systems in exploitation by means of supporting
tools. It implied making a great effort during this Thesis,
since the investigation was combined with the
implementation of supporting tools in parallel, and we
applied our techniques to several systems at different
companies and organizations in various countries. This
additionally entails a personal offering due to the various
pre-doctoral stays and several trips. However, I believe that
the fieldwork was the most contributing part during the
thesis. In fact, I learnt more with the any observation of
faults or unexpected results obtained in industrial case
studies than writing or reading papers at office.

B. Limitations of our Work

During the attendance at different conferences and
revisions of journal submissions, I was able to detect the
most common and recurrent criticisms of our work. In order

to be honest, I would like to share all these limitations with
the research community.

One of the most frequent clarification questions was
related about the possibility (or not) of discovering cross-
cutting business processes from different applications or
subsystems integrating a whole enterprise information
system, which are presents in some companies.
Unfortunately, this challenge is outside of the scope of the
thesis. However, it is an important open issue to be addressed
in the future according to the problems of delocalization and
interleaving of the embedded business knowledge [20].
These problems lie in the fact that pieces of knowledge are
usually scattered between many applications and, in turn, a
single application contains several pieces of business
knowledge.

The second limitation revealed by research community is
related to the time spent on manual post-intervention to
refine the first sketch of business process models that were
automatically obtained. Although the case studies show that
our proposal is less error-prone and time-consuming than
manual modeling from scratch, the manual time should be
reduced in future work.

V. FUTURE WORK

The future research lines of this PhD thesis are related to
the mentioned limitations. According to the discovery of
cross-cutting business processes, a future research line will
be devoted to apply MARBLE to large and complex
enterprise information systems with a large portfolio of
applications in order to obtain cross-cutting business
processes from heterogeneous, pervasive systems. Clustering
techniques will therefore be provided to combine atomic
business processes into a more complex one.

In line with the second threat to the validity of this
Thesis, the first sketch of business processes obtained by
reverse engineering is often fine-grained and very intricate.
The development of refactoring techniques will therefore
help to obtain more accurate, understandable and less
complex business processes. Refactoring techniques will be
employed to obtain alternative business processes, thus
reducing the complexity of the business process models
retrieved while preserving the external behavior. Thanks to
this automatic refinement, the effort related to manual post-
intervention by business experts will be minimized or even
avoided, and the accuracy of business process models will in
turn be increased.

Both future research lines have already begun to be
addressed. The first research line, related to business process
clustering, is being addressed by a student in his BSc project,
and the second line, related to business process refactoring,
is being carried out by an MSc student in her master thesis,
who will probably become in a PhD student.

Finally, in line with these future research lines, we have
planned to develop and maintain supporting tools. Since
MARBLE Tool has been released as an Eclipse™ plug-in, it
can be easily extended and integrated into other related tools,
e.g., tools supporting both future MARBLE-based
techniques and other related modernization and mining tools.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

675

VI. CONCLUSIONS

The main contribution of this PhD Thesis is MARBLE, a
generic ADM-based framework with which to obtain
business processes from legacy information systems. The
main implication of this contribution is that MARBLE is
generic and based on international standards, and is not
therefore limited to only one concrete technique or platform.
This is the key difference with regard to related works in
literature, which often present ad hoc or/and non-standard
solutions.

Both the static and the dynamic techniques demonstrate
the possibility of defining concrete techniques from
MARBLE. Unlike most proposals in literature, both
techniques have been successfully applied to various real-life
legacy information systems, thus demonstrating its
applicability in real environments. In fact, the conduction of
different industrial case studies is another important
contribution since these studies facilitates the transference of
technology to industry.

Moreover, there exist implications regarding all the
possible usages of business processes obtained by applying
the MARBLE-based techniques. As was mentioned before,
business processes discovered from legacy information
systems can be used with two main objectives. Firstly, the
business processes retrieved represent the actual, current
processes carried out by an organization. These business
processes may be used to discover (if it is the first discovery)
or align business processes (when a previous version exists)
with the actual business activities of a company. The second
usage of business processes consists of the software
modernization of legacy information systems. When a legacy
information system is modernized, evolved or migrated, the
whole behavior must be preserved in the new version. The
research proposal facilitates the extraction of business rules
(through business process discovery) which must be
incorporated into new versions of information systems. A
further implication of this Thesis is consequently its
contribution towards extending the lifespan of legacy
information systems, and the fact that it therefore also helps
to improve the ROI.

ACKNOWLEDGMENT

I would like to express my gratitude to my supervisors
Ignacio García and Mario Piattini. Additionally, this PhD
Thesis has been funded by the Spanish FPU program.

REFERENCES

[1] Canfora, G., M. Di Penta, and L. Cerulo, Achievements and challenges
in software reverse engineering. Commun. ACM, 2011. 54(4): p. 142-
151.

[2] Castellanos, M., K.A.d. Medeiros, J. Mendling, B. Weber, and
A.J.M.M. Weitjers, Business Process Intelligence, in Handbook of
Research on Business Process Modeling, J. J. Cardoso and W.M.P. van
der Aalst, Editors. 2009, Idea Group Inc. p. 456-480.

[3] Cleve, A. Program analysis and transformation for data-intensive
system evolution. IEEE International Conference on Software
Maintenance (ICSM). 2010. p. 1-6.

[4] Di Francescomarino, C., A. Marchetto, and P. Tonella, Reverse
Engineering of Business Processes exposed as Web Applications, in
13th European Conference on Software Maintenance and

Reengineering (CSMR'09). 2009, IEEE C. S.: Fraunhofer IESE,
Kaiserslautern, Germany. p. 139-148.

[5] Günther, C.W. and W.M.P. van der Aalst, A Generic Import
Framework for Process Event Logs. Business Process Intelligence
Workshop (BPI'06), 2007. LNCS 4103: p. 81-92.

[6] Heuvel, W.-J.v.d., Aligning Modern Business Processes and Legacy
Systems: A Component-Based Perspective (Cooperative Information
Systems). 2006: The MIT Press.

[7] Ingvaldsen, J.E. and J.A. Gulla, Preprocessing Support for Large Scale
Process Mining of SAP Transactions. Business Process Intelligence
Workshop (BPI'07) 2008. LNCS 4928: p. 30-41.

[8] ISO/IEC, ISO/IEC 14764:2006. Software Engineering -- Software Life
Cycle Processes -- Maintenance. http://www.iso.org/iso/
catalogue_detail.htm?csnumber=39064. 2006, ISO/IEC.

[9] ISO/IEC, ISO/IEC DIS 19506. Knowledge Discovery Meta-model
(KDM), v1.1 (Architecture-Driven Modernization). http://www.iso.org
/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?ics1=35&ic
s2=080&ics3=&csnumber=32625. 2009, ISO/IEC. p. 302.

[10] Jeston, J., J. Nelis, and T. Davenport, Business Process Management:
Practical Guidelines to Successful Implementations. 2nd ed. 2008, NV,
USA: Butterworth-Heinemann (Elsevier Ltd.). 469.

[11] Lehman, M.M., Program evolution. Information Processing &
Management, 1984. 20(1-2): p. 19-36.

[12] Lewis, G.A., D.B. Smith, and K. Kontogiannis, A Research Agenda
for Service-Oriented Architecture (SOA): Maintenance and Evolution
of Service-Oriented Systems. 2010, SEI. p. 40.

[13] Marcus, A., A. Sergeyev, V. Rajlich, and J.I. Maletic, An Information
Retrieval Approach to Concept Location in Source Code, Working
Conference on Reverse Engineering. 2004, IEEE C. S. p. 214-223.

[14] Paradauskas, B. and A. Laurikaitis, Business Knowledge Extraction
from Legacy Information Systems. Journal of Information Technology
and Control, 2006. 35(3): p. 214-221.

[15] Pérez-Castillo, R., I.G.-R. de Guzmán, and M. Piattini, Business
Process Archeology using MARBLE. Information and Software
Technology, 2011. 53: p. 1023–1044.

[16] Pérez-Castillo, R., M. Fernández-Ropero, I. García Rodríguez de
Guzmán, and M. Piattini, MARBLE. A Business Process Archeology
Tool, in 27th IEEE International Conference on Software Maintenance
(ICSM'11). 2011, IEEE C. S. p. 578-581.

[17] Pérez-Castillo, R., I. García-Rodríguez de Guzmán, O. Ávila-García,
and M. Piattini, Business Process Patterns for Software Archeology, in
25th Annual ACM Symposium on Applied Computing (SAC'10).
2010, ACM: Sierre, Switzerland. p. 165-166.

[18] Pérez-Castillo, R., B. Weber, I. García Rodríguez de Guzmán, and M.
Piattini, Generating Event Logs from Non-Process-Aware Systems
Enabling Business Process Mining. Enterprise Information System
Journal, 2011. 5(3): p. 301–335.

[19] Poshyvanyk, D. and A. Marcus, Combining Formal Concept Analysis
with Information Retrieval for Concept Location in Source Code, in
International Conference on Program Comprehension (ICPC'07). 2007,
IEEE C. S.: Banff, Alberta, Canada. p. 37-48.

[20] Ratiu, D., R. Marinescu, and J. Jurjens, The Logical Modularity of
Programs, in Working Conference on Reverse Engineering
(WCRE'09). 2009, IEEE Computer Science: Lille, France. p. 123-127.

[21] Sneed, H.M., Estimating the Costs of a Reengineering Project.
Proceedings of the 12th Working Conference on Reverse Engineering.
2005: IEEE C. S. 111 - 119.

[22] van der Aalst, W., H. Reijers, and A. Weijters, Business Process
Mining: An Industrial Application. Information Systems, 2007. 32(5):
p. 713-732.

[23] Van Geet, J. and S. Demeyer. Feature location in COBOL mainframe
systems: An experience report. in Software Maintenance, 2009. ICSM
2009. IEEE International Conference on. 2009.

[24] Zou, Y. and M. Hung, An Approach for Extracting Workflows from E-
Commerce Applications, International Conference on Program

Comprehension. 2006, IEEE C. S. p. 127-136.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

676

	Preamble
	Cover
	Publishing informations
	Foreword
	Committees
	Additional Reviewers

	Table of Contents
	KEYNOTES
	From Off-line to Continuous On-line Maintenance
	Mauro Pezzè

	Leveraging Natural Language Analysis of Software: Achievements, Challenges, and Opportunities
	Lori Pollock

	RESEARCH TRACK
	Session I - PROGRAM COMPREHENSION
	An Industrial Case Study of Coman's Automated Task Detection Algorithm: What Worked, What Didn't, and Why
	Lijie Zou
	Michael Godfrey

	Vasco: A Visual Approach to Explore Object Churn in Framework-intensive Applications
	Fleur Duseau
	Bruno Dufour
	Houari Sahraoui

	What Makes a Good Code Example? A Study of Programming Q&A in StackOverflow
	Seyed Mehdi Nasehi
	Jonathan Sillito
	Frank Maurer
	Chris Burns

	Session II - TESTING AND MAINTENANCE
	Testing C++ Generic Libraries
	Andrew Sutton
	Marcin Zalewski

	Code Coverage-Based Regression Test Selection and Prioritization in the WebKit System
	Árpád Beszédes
	Tamás Gergely
	Lajos Schrettner
	Judit Jász
	László Langó László Langó
	Tibor Gyimóthy

	An Empirical Analysis of the Distribution of Unit Test Smells and Their Impact on Software Maintenance
	Gabriele Bavota
	Abdallah Qusef
	Rocco Oliveto
	Andrea De Lucia
	Dave Binkley

	Session III - FAULT LOCALIZATION
	Interactive Fault Localization Leveraging Simple User Feedbacks
	Liang Gong
	David Lo
	Lingxiao Jiang
	Hongyu Zhang

	Finding Errors from Reverse-Engineered Equality Models using a Constraint Solver
	Chandan Rupakheti
	Daqing Hou

	Session IV - MAINTENANCE ISSUES IN OO SYSTEMS
	The Order of Things: How Developers Sort Fields and Methods
	Benjamin Biegel
	Fabian Beck
	Willi Hornig
	Stephan Diehl

	Rejuvenating C++ Programs through Demacrofication
	Aditya Kumar
	Andrew Sutton
	Bjarne Stroustrup

	Session V - CHANGE IMPACT ANALYSIS
	A Change-Impact Analysis to Characterize Evolving Program Behaviors
	Neha Rungta
	Suzette Person
	Joshua Branchaud

	Fine-Grained Change Impact Analysis for Component-Based Product Families
	Amir Reza Yazdanshenas
	Leon Moonen

	Configuration Selection Using Code Change Impact Analysis for Regression Testing
	Xiao Qu
	Mithun Acharya
	Brian Robinson

	Session VI - ANALYSIS OF BUILD SYSTEMS
	Build System Issues in Multilanguage Software
	Andrew Neitsch
	Kenny Wong
	Michael W. Godfrey

	Detecting Semantic Changes in Makefile Build Code
	Jafar Al-Kofahi
	Hung Nguyen
	Anh Nguyen
	Tung Nguyen
	Tien Nguyen

	An Empirical Study of Build System Migrations in Practice: Case Studies on KDE and the Linux Kernel
	Roman Suvorov
	Bram Adams
	Meiyappan Nagappan
	Ahmed Hassan
	Ying Zou

	Session VII - TRACEABILITY
	Assessing the Effect of Requirements Traceability for Software Maintenance
	Patrick Mäder
	Alexander Egyed

	Do Data Dependencies in Source Code complement Control Dependencies for Understanding Requirements Traceability?
	Hongyu Kuang
	Patrick Mäder
	Alexander Egyed
	Achraf Ghabi
	Hao Hu
	Jian Lv

	An Empirical Study on Requirements Traceability Using Eye-Tracking
	Nasir Ali
	Zohreh Sharafi
	Yann-Gael Gueheneuc
	Giulio Antoniol

	Session VIII - SOFTWARE CHANGES
	Recovering Commit Dependencies for Selective Code Integration in Software Product Lines
	Tejinder Dhaliwal
	Foutse Khomh
	Ying Zou
	Ahmed E. Hassan

	Search-based Detection of High-level Model Changes
	Ameni Ben Fadhel
	Marouane Kessentini
	Philip Langer
	Manuel Wimmer

	How Often Do Unintended Inconsistencies Happen? Deriving Modification Patterns and Detecting Overlooked Code Fragments
	Yoshiki Higo
	Shinji Kusumoto

	Session IX - TEXTUAL ANALYSIS
	LINSEN: An Approach to Split Identifiers and Expand Abbreviations with Linear Complexity
	Anna Corazza
	Sergio Di Martino
	Valerio Maggio

	Relating Requirements to Implementation via Topic Analysis: Do Topics Extracted from Requirements Make Sense to Managers and Developers?
	Abram Hindle
	Christian Bird
	Thomas Zimmermann
	Nachiappan Nagappan

	Session X - FAULT CORRECTION
	Making Automatic Repair for Large-scale Programs More Efficient Using Weak Recompilation
	Yuhua Qi
	Xiaoguang Mao
	Yan Lei

	The impact of bug management patterns on bug fixing: a case study of Eclipse projects
	Masao Ohira
	Ahmed E. Hassan
	Naoya Osawa
	Kenichi Matsumoto

	Session XI - CLONING
	Things Structural Clones Tell that Simple Clones Don't
	Hamid Abdul Basit
	Usman Ali
	Sidra Haque
	Stan Jarzabek

	Cloning Practices: Why Developers Clone and What can be Changed
	Gang Zhang
	Xin Peng
	Zhenchang Xing
	Wenyun Zhao

	Models are Code too: Near-miss Clone Detection for Simulink Models
	Manar Alalfi
	James Cordy
	Thomas Dean
	Matthew Stephan
	Andrew Stevenson

	Session XII - MAINTAINABILITY
	Do Code Smells Reflect Important Maintainability Factors?
	Aiko Yamashita
	Leon Moonen

	A Cost Model Based on Software Maintainability
	Tibor Bakota
	Péter Hegedus
	Gergely Ladányi
	Péter Körtvélyesi
	Rudolf Ferenc
	Tibor Gyimóthy

	A Systematic Mapping Study on Dynamic Software Metrics
	Amjed Tahir
	Stephen MacDonell

	Session XIII - REFACTORING
	Refactoring in the Presence of Annotations
	Carlos Noguera
	Andy Kellens
	Coen De Roover
	Viviane Jonckers

	Search-based Refactoring : Towards Semantics Preservation
	Ali Ouni
	Marouane Kessentini
	Houari Sahraoui
	Mohamed Salah Hamdi

	An Empirical Investigation into the Impact of Refactoring on Regression Testing
	Napol Rachatasumrit
	Miryung Kim

	Session XIV - LIBRARY AND API EVOLUTION
	Survival of Eclipse Third-party Plug-ins
	John Businge
	Alexander Serebrenik
	Mark Van Den Brand

	Measuring Software Library Stability Through Historical Version Analysis
	Steven Raemaekers
	Arie Van Deursen
	Joost Visser

	Inferring the Data Access from the Clients of Generic APIs
	Hui Song
	Gang Huang
	Yingfei Xiong
	Yanchun Sun

	Session XV - SPREADSHEET MAINTENANCE
	Refactoring meets Spreadsheet Formulas
	Sandro Badame
	Danny Dig

	Code Smells in Spreadsheet Formulas
	Felienne Hermans
	Martin Pinzger
	Arie Van Deursen

	Session XVI - BUG REPORTING
	When Would This Bug Get Reported?
	Ferdian Thung
	David Lo
	Lingxiao Jiang
	Premkumar Devanbu
	Lucia Lucia
	Foyzur Rahman

	Modelling the `Hurried' Bug Report Reading Process to Summarize Bug Reports
	Rafael Lotufo
	Zeeshan Malik
	Krzysztof Czarnecki

	Session XVII - BUG AND WARNING MANAGEMENT
	Domain Specific Warnings: Are They Any Better?
	Andre Hora
	Nicolas Anquetil
	A Ducasse
	Simon Allier

	Triaging Incoming Change Requests: Bug or Commit History, or Code Authorship?
	Mario Linares-Vasquez
	Hoang Dang
	Md Kamal Hossen
	Huzefa Kagdi
	Malcom Gethers
	Denys Poshyvanyk

	Session XVIII - CLUSTERING AND MODULARIZATION
	Feature-Gathering Dependency-Based Software Clustering Using Dedication and Modularity
	Kenichi Kobayashi
	Manabu Kamimura
	Koki Kato
	Keisuke Yano
	Akihiko Matsuo

	Supervised Software Modularisation
	Mathew Hall
	Neil Walkinshaw
	Phil McMinn

	INDUSTRY TRACK
	Session I
	A Structured Approach to Assess Third-Party Library Usage
	Veronika Bauer
	Lars Heinemann
	Florian Deissenboeck

	Reengineering Embedded Automotive Software
	Jochen Quante
	Andreas Thums

	Incremental Reengineering and Migration of a 40 Year Old Airport Operations System
	Mario Bernhart
	Andreas Mauczka
	Michael Fiedler
	Stefan Strobl
	Thomas Grechenig

	Dead Code Elimination for Web Systems Written in PHP: Lessons Learned from an Industry Case (Short Paper)
	Hidde Boomsma
	Hans-Gerhard Gross

	Session II
	Sustainability Guidelines for Long-Living Software Systems
	Zoya Durdik
	Klaus Krogmann
	Benjamin Klatt
	Heiko Koziolek
	Roland Weiss
	Johannes Stammel

	Facilitating Enterprise Software Developer Communication with CARES
	Anja Guzzi
	Andrew Begel
	Jessica Miller
	Krishna Nareddy

	A Framework for Incremental Quality Analysis of Large Software Systems
	Veronika Bauer
	Lars Heinemann
	Benjamin Hummel
	Elmar Juergens
	Michael Conradt

	Locating Performance Improvement Opportunities in an Industrial Software-as-a-Service Application
	Cor-Paul Bezemer
	Andy Zaidman
	Ad Van Der Hoeven
	André van de Graaf
	Maarten Wiertz
	Remko Weijers

	Automated Architectural Reviews with Semmle
	Kris De Schutter

	ERA TRACK
	Session I - SOFTWARE
	Time-Leverage Points Detection for Time Sensitive Software Maintenance
	Enyi Tang
	Linzhang Wang
	Jianhua Zhao
	Xuandong Li

	Inferring Weak References for Fixing Java Memory Leaks
	Ju Qian
	Xiaoyu Zhou

	Move Code Refactoring with Dynamic Analysis
	Shuhei Kimura
	Yoshiki Higo
	Hiroshi Igaki
	Shinji Kusumoto

	Dependence Communities in Source Code
	James Hamilton
	Sebastian Danicic

	Session II - INFORMATION
	A Study on Repetitiveness of Code Completion Operations
	Takayuki Omori
	Hiroaki Kuwabara
	Katsuhisa Maruyama

	Vocabulary Normalization Improves IR-Based Concept Location
	Dave Binkley
	Dawn Lawrie
	Christopher Uehlinger

	Who's who in Gnome: using LSA to merge software repository identities
	Erik Kouters
	Bogdan Vasilescu
	Alexander Serebrenik
	Mark Van Den Brand

	Automatic Classification of Software Related Microblogs
	Philips K. Prasetyo
	David Lo
	Palakorn Achananuparp
	Yuan Tian
	Ee-Peng Lim

	Detecting Similar Applications Leveraging Collaborative Tagging
	Ferdian Thung
	David Lo
	Lingxiao Jiang

	Inferring Semantically Related Software Terms and Their Taxonomy By Leveraging Collaborative Tagging
	Shaowei Wang
	David Lo
	Lingxiao Jiang

	Session III - HISTORY
	Version History Based Source Code Plagiarism Detection in Proprietary Systems
	Girish Maskeri Rama
	Deepthi Karnam
	Srinivas Padmanabhuni
	Sree Aurovindh Viswanathan

	Applying technical stock market indicators to analyze and predict the evolvability of open source projects
	Aseel Hmood
	Mostafa Erfani
	Iman Keivanloo
	Juergen Rilling

	Refactoring Edit History of Source Code
	Shinpei Hayashi
	Takayuki Omori
	Teruyoshi Zenmyo
	Katsuhisa Maruyama
	Motoshi Saeki

	Retrieving Software Maintenance History with Topic Models
	Shusi Yu

	A Software Change Impact Analysis Taxonomy
	Jerod Wilkerson

	Adapting Linux for Mobile Platforms: An Empirical Study of Android
	Foutse Khomh
	Hao Yuan
	Ying Zou

	TOOL DEMONSTRATIONS TRACK
	SEANets: Software Evolution Analysis with Networks
	Theodore Chaikalis
	George Melas
	Alexander Chatzigeorgiou

	Understanding Model Evolution through Semantically Lifting Model Differences with SiLift
	Timo Kehrer
	Udo Kelter
	Manuel Ohrndorf
	Tim Sollbach

	TraceME: Traceability Management in Eclipse
	Gabriele Bavota
	Luigi Colangelo
	Andrea De Lucia
	Sabato Fusco
	Rocco Oliveto
	Annibale Panichella

	Bacterio: Java Mutation Testing Tool
	Pedro Reales Mateo
	Macario Polo Usaola

	A Toolset for GUI Testing of Android Applications
	Domenico Amalfitano
	Anna Rita Fasolino
	Porfirio Tramontana
	Salvatore De Carmine
	Gennaro Imparato

	MOTCP: a Tool for the Prioritization of Test Cases based on a Sorting Genetic Algorithm and Latent Semantic Indexing
	Md. Mahfuzul Islam
	Alessandro Marchetto
	Angelo Susi
	Giuseppe Scanniello

	The Demacrofier
	Aditya Kumar
	Andrew Sutton
	Bjarne Stroustrup

	Supporting the Identification of Architecturally-Relevant Code Anomalies
	Isela Macia
	Roberta Arcoverde
	Elder Cirilo
	Alessandro Garcia
	Arndt von Staa

	reBPMN: Recovering and Reducing Business Processes
	Alex Tomasi
	Alessandro Marchetto
	Chiara Di Francescomarino
	Angelo Susi

	DOCTORAL SYMPOSIUM
	MARBLE: Modernization Approach for Recovering Business Processes from Legacy Information Systems
	Ricardo Perez-Castillo

	Understanding Deployment Costs of Enterprise Systems
	Balthasar Weitzel

	List of Authors

